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We consider the two-dimensional stochastic Ising model in finite square A with 
free boundary conditions, at inverse temperature fl > fl,. and zero external field. 
Using duality and recent results of Ioffe on the Wulff construction close to the 
critical temperature, we extend some of the results obtained by Martinelli in the 
low-temperature regime to any temperature below the critical one. In particular 
we show that the gap in the spectrum of the generator of the dynamics goes to 
zero in the thermodynamic limit as an exponential of the side length of A, with 
a rate constant determined by the surface tension along one of the coordinate 
axes. We also extend to the same range of temperatures the result due to 
Shlosman on the equilibrium large deviations of the magnetization with free 
boundary conditions. 
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I N T R O D U C T I O N  

In  the  last  t w o  years  the re  has  b e e n  c o n s i d e r a b l e  p rog re s s  in the  de ta i l ed  

d e s c r i p t i o n  o f  the  t w o - d i m e n s i o n a l  k ine t i c  I s ing  m o d e l  ins ide  a n d  ou t s ide  

the  phase  coex i s t ence  region.  

W h e n  the  inverse  t e m p e r a t u r e  fl and  the  ex te rna l  field h are  such  tha t  

there  is no  phase  t rans i t ion ,  it has  been  finally es tab l i shed  tha t  the  r e l axa t ion  
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time (which in our discussion we take as the inverse of the gap in the spec- 
trum of the generator of the dynamics) of any Glauber-type dynamics in a 
finite rectangle is bounded from above uniformly in the size of the rectangle 
and in the boundary conditions. Such a bound was first proved for fl < fl,. 
and arbitrary h or h ~ 0  and fl>>fl,. (see refs. 15, 13, and 14) and only 
recently it has been extended to any f l>f l , ,  and arbitrary h ~0.  ~9~ Here fl,, 
denotes the critical point. 

On the other hand, when h = 0  and f l>f l , . ,  the infinite-volume 
Glauber dynamics is no longer ergodic due to the existence of two extremal 
Gibbs states and one easily realizes that the relaxation time in an L x L 
square with free boundary conditions diverges when L ~ or. In ref. 11 (see 
Theorem 4.2) the precise logarithmic asymptotics of the gap was computed 
for fl ,> fl,. and found to be 

gap(L, free boundary conditions ) ~ exp[-f l rb(0)  L]  

where r/~(0) stands for the surface tension in the direction of one of the 
coordinate axes. A similar behavior has recently been proved in ref. 6 for 
other boundary conditions that, roughly speaking, do not favor either one 
of the two phases, without, however, a precise estimate of the rate constant. 

The picture of the relaxation to the Gibbs equilibrium measure that 
comes out of the results of ref. 11 and subsequently substantially improved 
in ref. 12, is the following: the system first relaxes rather rapidly to one of 
the two phases and then it creates, via a large fluctuation, a thin layer of 
the opposite phase along one of the sides of A. Such a process requires 
already a time of the order of exp Emg~ After that, the opposite phase 
invades the whole system by moving, in a much shorter time scale, the 
interface to the side opposite to the initial one and equilibrium is finally 
reached. Once this picture is established it is not difficult to show that, 
under a suitable stretching of the time by a factor a ( L ) ~ e x p  [p~p~~ the 
magnetization in the square A behaves in time as a continuous Markov 
chain with state space { - m * ,  +m*} and unitary jump rates, where m* is 
the spontaneous magnetization (see Theorem 6.1 of ref. 11). 

The key ingredients of the results in ref. 11 were as follows: 

(i) A geometric bound on the gap in the spectrum of the generator 
of the dynamics in a rectangle. 

(ii) Some detailed equilibrium estimate on the fluctuations of a 
horizontal interface of length L. 

(iii) A precise estimate of the equilibrium probability of having 
anomalous magnetization rn 4( cr ) ~ ( - m * ,  m*).  
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The first was borrowed from a clever technique to bound from below 
the spectral gap of symmetric Markov chains on complicated graphs intro- 
duced in ref. 9 in the framework of hard computational problems. It is 
important for us that its validity is independent of ft. The second and third 
were available at low enough temperature thanks to the results of refs. 2 
and 17 on the rigorous Wulff construction. Here the requirement of large 
fl was quite essential since most of the results in ref. 2 were obtained 
through cluster expansions methods. 

Recently, however, there has been remarkable progress in the rigorous 
theory of the Wulff construction for any fl > tic, using the powerful methods 
of dualityJ v'8~ Duality had already played a relevant role in the approach 
to the Wulff construction and phase separation developed in ref. 16 for the 
2D Ising model with + boundary conditions at low temperature and the 
main contribution of the above two papers was to combine it with the 
Fortuin-Kasteleyn representation of the Ising model to push some of the 
most relevant results of ref. 16 up to the critical point excluded. The ideas 
and techniques developed in these two papers were also fundamental to the 
analysis of metastability for the 2D Ising model very close to the line of 
first-order phase transitionJ -''1 Relevant simplifications of the techniques of 
refs. 7 and 8 can be found in refs. 19 and 20. 

In this paper we use duality techniques to extend up to fl,. the basic 
estimates (ii) and (iii) above. As a consequence we compute for any fl>fl,. 
the logarithmic asymptotics of the relaxation time in the thermodynamic 
limit and show that it has the same form as the one computed in ref. 11. 
Our result, however, is stated in a slightly weaker form than the corre- 
sponding one in ref. 11 since we do not give any explicit bounds on the 
finite-volume correction. This is due to the fact that, contrary to what 
happens in the low-temperature regime, where the powerful methods of 
cluster expansion are available, duality methods so far seem able to provide 
good estimates on the fluctuations of an interface only when these are of 
the same order of magnitude as the length of the interface itself. 

Once we have (ii) for any fl>fl,., it follows from the same technique 
described in Section 3 of ref. 11 that if we replace on one side of the square 
A the free boundary conditions with plus b.c., then the relaxation time of 
the new system becomes much smaller than it was before and in particular 
it can be bdunded from above by an exponential in L with a rate that 
vanishes in the thermodynamic limit. Using this result, one could extend up 
to fl,. the results of Section 6 of ref. 11 on the Markov chain description of 
the magnetization mentioned above. We decided, however, to skip this part 
in order to avoid too much repetition. 

We conclude this introduction with a brief summary of the various 
sections. In Section 1 we fix the notation and state the major result. In 
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Section 2 we recall the main steps of the argument given in ref. 11 and 
prove the main theorem assuming three key propositions. In Section 3, the 
core of the paper, we prove the main technical estimates. In Section 4 we 
use the results of Section 3 to give the proof of two of the three proposi- 
tions used in Section 2. In Section 5 we prove the last proposition of Sec- 
tion 2 by extending to any fl > fl,. the result of ref. 17 on the large devia- 
tions of the magnetization with free boundary conditions. 

1. NOTATION A N D  RESULTS 

1.1. General Def ini t ions 

We consider the two-dimensional lattice 7/2 , whose elements are called 
sites, and its dual Z ,  = 7/2 + (1/2, 1/2). For  x, y e 1~ 2 we define the distances 

2 

d(x, y )= l x -  yl = ~, I x i -  yil 
i = 1  

(f ),,2 
d2(x, y) = I x -  y[z = [x~- y~lZ 

i 1 

[x, y ]  is the closed segment with x, y as its endpoints. The edges of Z2(7/,) 
7/7 are those e = Ix, y ]  with x, y nearest neighbors in -(Z~,). Given an edge 

e of Z 2, e* is the unique edge in 7/, that intersects e. The boundary of  an 
edge e = Ix, y ]  is 8e = {x, y}. The boundary of  a subset of  edges oL is the set 
of sites 6~ that belong to an odd number of edges of ~. A set of edges is 
called closed if its boundary is empty. We denote by gA the set of all edges 
such that both endpoints are in A and by ~ the set of all edges with at 
least one endpoint in A. Conversely, for a set of edges X, r stands for 
the set of all sites which are endpoints of at least one edge in X. 

Given A c7/2, we let Ac=7/2kA and define A* as the set of all x e 7 / ,  
such that d(x, A) = 1. The set of the dual edges is defined as 

#3 = {e*: eegA} 

Notice that, in general, 6 "  c ~,~. (the equality holds, for instance, in the 
case of rectangles). We will often consider our model on a ( 2 L + l ) x  
(2M + 1 ) rectangle 

QL,  M = {(X 1 , X2) E 772: --L <~ xl <~ L, - M  <~ xz <~ M } 
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Fig. 1. The interior of a closed set of dual edges. 

QL stands for QL L. If  A is finite, we write A c c  7/-'. The cardinality of  A 
is denoted by IAI. We define the boundaries 

OA = {x~A:  d(x, A")= 1} 

O+A= {xEA": d(x ,A)= I} 

6A = {e*: e~A\d'A} 

(xl ..... x,,) is called a path from x I to x,, if Ixi+~ - x ;  I = 1 for i =  1 ..... n -  1. 
A . - pa th  is the same as a path  with [xi+ ~ - x~[ = 1 replaced by Ix i -  xi+ ~ [2 E 
{ 1, x/~}. A ( , - )  path is called self-avoiding if x i :7 ~ .~.'j for all {/, j} such that  
i P j  and {i, j} 4:{1,  ,7}. If  .x'~ = x,, the ( . - )  path is called closed. 

We say that  A c 7/2 is connected ( . -connected)  if for all x, y in A there 
exists a path  ( . -pa th )  from x to y which is entirely contained in A. We call 
A c c  7/'- simply connected if A c is connected. A set of  edges a is connected 
if the union of  all its edges is connected in ~2. 

so* is a finite, closed set of  dual edges, then we define the in,e- If  ~ ~ z~ 
r&r of  ~ as the set of  all sites x = (x~, x2) ~ 7/2 such that  the half-line 

{x~} x[x,, +oo) 

intersects ~ in an odd number  of  points (see Fig. 1). 
The interior of  0~ is denoted by int e. 

1.2. The  Ising M o d e l  

We consider the s tandard  2D Ising model  with configuration space 
= { - 1, + 1} z-', or  ~2 v = { - 1, + 1} v for some V c  7 2. An element of  ~ v 

will usually be denoted by o-= {~(x), x ~  V}. If  U c  V c Z  2 and ~ g 2 v ,  we 
denote by ~u the restriction of  cr to the set U. If  U, V are disjoint, ~u~v 
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is the configuration on Uw Vwhich is equal to (...guess what) a on U and 
q on V. 

Given V ~  Z 2 and some boundary condition (b.c.) q E ~2, we consider 
the Hamiltonian 

- H t " ( ~ )  = �89 Y 
x ,  3 ' ~  V 

I x -  .vl = 1 

J(x, y)(a(x) a(y) - 1 ) 

+ ~ J(x, y)(a(x)q(y)- 1) (1.1) 
x e~ V, y E l "w 

I x -  y l  = I 

The coupling J has been introduced for technical reasons, but our main 
result is for J =  1. We always assume 0 ~J(x, y) for all x, y. 

For further convenience we define the Hamiltonian with free boundary 
conditions using a different normalization 

X, .1' E; I/" 
I X -  .1' I = 1 

J(x, y) a(x) a(y) 1.2) 

The partition function is given by 

ZP's'"(V)= ~ exp[-flH~"(a)] 
r1~ .O. V 

1.3) 

When J(x, .v)= 1 for all x, y, we drop the superscript J. We somenmes 
consider also the Hamiltonian with free b.c. on a restricted set of bonds: If 
X c 4'~v, we write 

-HS;~(a)= ~ J(x, y) a(x) a(y) (1.4) 
Ex. y ]  ~.~" 

Of course this is equivalent to having J(x, y)=O unless [x, y]  e X. The 
partition function corresponding to (1.4) is denoted by Z/~' J' ~( V, X). 

When V is a rectangle V= QL M, we define the [k]  boundary condi- 
tion by [let x = ( x , ,  x2)] 

[ k ] ( x ) =  { -  1 if x2>~M-k+l  
+1 if x 2 ~ M - k  (1.5) 

so, in particular, [0]  b.c. means - 1  on the top side of the rectangle and 
+1 on the remaining three sides. A rectangle V has a 6-boundary 6V 
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consisting of a top, bottom, left, and right sides, which we denote, respec- 
tively, with 3, II, 6b V, 6/V, and fir V. So, for instance, 

O, QL.M = {e=  [x, y ] * '  [x, y ]  = [(j ,  M), (j, M +  1)] j =  - L  ..... L} 

In the following we will often choose J - -  1 everywhere with the exception 
of one or more sides of a certain rectangle, where we take J = e .  So we 
introduce the notation 

J~(V;x' Y)={ el if otherwise [x, y ] * e f V  

j~l( V; x, y) = {] if otherwise [x,y]*~6, Vu6rV 

J:I v;.,-, y / =  if Ix, y]*  

otherwise Ll 

(1.6) 

Jr(V;x,y)={] otherwiseif [x, y]*~,~V\fbV 

The (finite-volume) conditional Gibbs measure associated with the 
Hamiltonian (1.1) is defined as 

f ( Z  p'J' ~(V)) - t  exp[ --flH~(a)] 
l@ J" ~(a) = ~ if a(x) = z(x) for all x ~ V'" 

{(3 otherwise 

(1.7) 

l ~ / ~ .  J ,  r / . The expectation with respect to the measure (1.7) is denoted by - v  , )- 
The set of measures (1.7) satisfies the DLR compatibility conditions 

5". VVcAcc7? 2 (1.8) 

One introduces a partial order on /2  v by saying that a ~< a' if a(x) <~ a'(x) 
for all x ~ II. A function f: 12 v ~-~ R is called monotone increasing (decreasing) 
if a<~a' implies f(a)<~f(a')(f(a)>~f(a')). An event is called positive 
(negative) if its characteristic function is increasing (decreasing). Given two 
probability measures /2,/2' on 12v, we write/2 ~</2' if p(f)<~/2 ' ( f )  for all 
increasing functions f [by /2(f) we denote the expectation with respect 
to 12]. 
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In the following we will take advantage of the FKG inequalities, 141 
which state that: 

(1) If q~q ' ,  then lL~J'q<<.ll/LJ'q' 
(2) If f and g are increasing, then E() J" ~(fg) >1 E#I) J" r(f) E[[:J. r(g). 

The Surface Tension. We denote by rp(`9) the surface tension at angle 
9̀ (0 ~< ̀9 ~< 7r/2), which measures the free energy of an interface in the direc- 
tion orthogonal to the vector n:~=(cos`9, sin`9). We refer the reader to 
ref. 16 for a precise definition. In the standard Ising model we have, by 
symmetry, 

~p(`9) = r/~(0 + 7r/2) = rlj(zr/2 - O) (1.9) 

We extend r/~ to a function on R-' by setting 

We also let for simplicity 

rP(x) = Ixl2 r ~ / ~  ) _ 

r/j = ra(,9 = 0) = r~(,9 = 2/2) 

For the reader's convenience we recall (see Lemma 6.3 in ref. 16) that 

E(~' ~a(x)  r ~< exp[ - f l* rp . (x  - y)]  (1.10) 

where fl* is the dual value for fl [see (1.19)]. We are also going to make 
use of the so-called sharp triangle inequality (Lemma 2.1 of ref. 7), which 
in particular implies that if fl>fl,., there exists D(f l )> 0 such that 

r/j(,9)/> r/~ cos ,9 + D(fl) sin2(0/2) (1.I 1 ) 

As a consequence of (1.11) and (1.9) we have 

r / ~ > _  r/s (1.12) p~v/ 7 f ~  

For further relevant properties of the surface tension the reader is again 
referred to ref. 16. 

1.3. Contours 

We use the contour representation with the so-called splitting rules 
(see, for instance, ref. 2). Given (cr, 1/, A), we define #i](a) as the set of all 
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unsatisfied edges in d'~* of the configuration a subject to b.c. 11, i.e., if 
p = aA r/A,, then 

~ ( a ) =  {e* = [x, y]* eg* :  p(x)#p(y)} 

If the b.c. q is + (or - ) ,  then ~ ( a )  is closed, while in general it has a 
nonempty boundary. We have the following result. 

Proposition 1.1. I f A c c 7 7  2, q~f2, then: 

(i) The boundary of #~ (a )  does not depend on a, so in particular 
- -  ,A r/ ~,~,(a)  - 6~,,( + 1 ). 

(ii) 6d~(a )cA*  

(iii) If A is simply connected, ~'~ is a one-to-one mapping from f2 A �9 / |  

onto the set 

{x=~*: 6x=6~',,,(+ 1)} 

Parts (i) and (ii) are straightforward. For (iii) see, for instance, 
Lemma 6.1 in ref. 12, which deals with the case II = + 1 (the generalization 
is easy). 

It is useful to decompose ~ ( c r )  and in general an arbitrary set X of 
dual edges as a collection of contours 7i 

X = y  I k,,) . . .  k . ) } )  n (1.13) 

which have the advantage that they can be associated with simple self- 
avoiding (open or closed) curves in N-'. Decomposition (1.13) is intuitively 
obtained by cutting all three- and four-edge meetings along the southwest 
to northeast direction. More precisely, we first consider the subset of R 2, 

2 = U e  
e ~ X  

Then, at each dual site where three or four edges of X meet, we operate the 
rounding the corner operation shown in Fig. 2. 

--~-- Jf- --[- -f-  
I ' J  k r q q  

Fig. 2. The splitting rules. 
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Fig. 3. An example of operating the splitting rules. 

In this way we obtain another subset ~" of R 2 whose Hausdorff dis- 
tance from ~ is less than, say, I/3. Now .~ can be decomposed as a union 
of its connected components ~ =  YI w . . .  w Y,,. Finally, we define 7; as the 
set of all edges which "belong" to Y;, i.e., 

7~ = {e ~ X: the Hausdorff distance of e from Y; is less than I/3} 

Figure 3 shows a set of edges on the left and the corresponding collection 
of contours on the right. 

We now give an independent definition of contours and we introduce 
the notion of compatibility between contours in such a way as to have a 
one-to-one correspondence between sets of edges and compatible collec- 
tions of contours. 

Let us denote by ~,,, ~,., d,., and ~,. the unit vectors in R 2 pointing in 
directions respectively north, south, east, and west. Let also ~,,(x) be the 
edge whose endpoints are x and x + d,, (and similarly for the other direc- 
tions). To each edge e we associate a set of three edges A(e) given by 

A(~,,(x)) = ~,.(x) u ~.,.(x) u ~,,(x + d,.) 

A(d,,(x)) = ~,,(x) w d,.(x) w d,.(x + d,,) 

The elements in d(e)  are said to be forbidden by e (for reasons which will 
become clear when the "compatibility" is introduced). We extend the 
notion of forbidden edges to contours by setting 

A(7) = U A(e) 

The definition of A(e) is such that, for any two edges e, e' we have 

A ( e ) ~ e '  i f a n d o n l y i f  e e d ( e ' )  
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Given  a set E of  edges (or  dual edges), a contour in E is a finite sequence 
of  elements  of  E, y = (el ..... e,,), such that  it is possible to write e; = [x,., y ; ]  
and (1) all edges e; are distinct, (2) y~ = x ; + l ,  and (3) for any  two noncon-  
secutive edges e, e' we have eCzJ(e ') .  

I f  xl  =y,,, the con tour  is called closed, otherwise it is open. We do not  
distinguish between two contours  with the same set of  edges. The represen- 
ta t ion (e~ ..... e,,) of  )' is thus always to be interpreted modu lo  a reversal of  
the order ing of  the edges and,  for closed contours ,  modu lo  a cyclic pe rmu-  
tation. T w o  edges e and e' are said to be consecutive in a con tou r  y if they 
are consecutive in at least one representat ion.  

We will somet imes  use the same symbol  )' to denote  the set {e~ ..... 6,} 
and we will improper ly  write things like e e y and y c X. 

For  further convenience we introduce a modified version of A(e). If  
x e 6e, we let 

A(e, x ) =  { e ' c A ( e ) :  xq~6e'} we  

and for all open con tours  )' = (el ,..., e,,) with e ; =  [x~_ ~, x;] ,  

z~'(y, Xo) = 0 zJ(ei) u A(e I , x o) 
i = 2  

n - - I  

A'(y,x, ,)= U A(ei)wA(e,, ,x, ,)  (1.14) 
i = l  

n I I  

A"()~)= U A(e i )wA(e l ,xo)wA(e , , , x , , )  
i = 2  

Somet imes  it is more  convenient  to consider  the forbidden sites, so we let 

A~(y) = { x e 7/2. dz(x, A(~)) = 1/2} (1.15) 

The  boundary 67 of a con tour  is given by the usual bounda ry  of  )' when ? 
is thought  of  as a set o f  edges. Thus  63: can either be emp ty  or  consist o f  
a pair  of  sites. Given  a collection of  contours  y = {)'}, its boundary 6)'_ is 
defined as 

6y = U 

(notice tha t  the b o u n d a r y  of  a collection of  contours  is not  equal  to the 
b o u n d a r y  of the set of  all edges in some y s_)'). Given  a set of  edges X, we let 

C(X) = { y: y is a closed con tour  in X} 

C(X, {x, y})  = {)': )' is a con tour  in X w i t h  b o u n d a r y  6), = {x, y}} 

822/85/1-2-5 
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Two contours y, and Y2 are said to be compatible if their boundaries are 
disjoint and 

A(7~)ny_, = ~ or equivalently y~ (~A()J2) = ~ 

A collection ), of contours in X is called compatible if each pair in 7 is com- 
patible. We define 

C*(X, U)= the set of all compatible collections 

), of contours in X such that 67 = U 

For  simplicity C*(X)= C*(X, ~ )  denotes compatible collections of closed 
contours. 

The &terior of a compatible collection of closed contours 7 is defined 
a s  

(1.16) 

(the interior of a closed set of edges was defined in Section 1.1 ). 
Is is straightforward to check that there is a one-to-one corre- 

spondence between C*(X, U) and the set of all subsets Y c  X such that 
~5 Y= U. The collection of contours corresponding to the set of edges ~'+(~(cr) 
will be denoted by ~J?~(~). 

We introduce now the contour partition function, which is a basic 
object in what follows. Let then X c c  '* U c c T / ,  ~.,, and let 2 be a com- 
patible collection of contours in X whose boundary is contained in U, i.e., 
),~ C*(X, V) for some V c  U. We define 

2tJ'"(X, U; -2)= Z wtj. A_~') 
),: ), ,.* _). e C * (  X.  U )  

where the weight of a collection of contours is given by 

Wl*.S(Z) = l-[ wp.j(7)= 1-'I 1-I exp[ -2flJ(e)] 
)'~_, ),~)' eE;'  

If the arguments U or 2 are missing in Z(X, U; _2), they must be interpreted 
as the empty set, so in particular Z(X) is the sum of the weights of all com- 
patible collections of closed contours in X. The notion of compatibility 
between contours is such that we have 

2'~. ~(x, u; -2)= 2~.~(x\,~(-2), u\,L,3) 
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If A c c  Z-' is simply connected, we can express the usual partition function 
as a contour partition function by 

Z#'J'"(A) = 2/s'J(~ *, ~ (  + 1)) 

In the special case that A is a rectangle, A = QL.M, with [k]  b.c. [see 
(1.5) ], then an open contour will appear on going from ak to b,,  where ak 
and bk are the two extreme sites in the ( k +  1)th row (from the top) of A*, 
i.e., 

ak=(--L ~ M + ~ - k ) ,  bk ( + L + ~ , M + ~ - k )  (1.17) 

and the partition function is given by 

Z/J'J'E*1(A)=2 Is's * {a~,b,} (o~:,, )= ~ w/,.j(),) 2/~.J(,~ * ~,) 
"/E CIgr  {at,.. bkl ) 

Thanks to the duality properties of the 2D Ising model, ~16~ one can also 
write the partition function with free b.c. as 

Z/s'J" ~(A, X) = 2 IAI IF[ cosh[flJ(e)] 2/J*'J*(X) 
c , ~ X  

for any Xc,~)~ (1.18) 

where fl* and J* are determined by the duality relationships 

e -2p = tanh fl*, e-21JJ'~= tanh[fl*J(e)*] (1.19) 

Equation ( 1.18 ) implies 

Z/J'J'+(A) =2-tA*l [ I  {cosh[fl*J(e)*]} - '  Z~*'s*'~ *, eg*) (1.20) 
e ~ 8 ]  

The critical value fl<. is determined by the equality fl<. = fl*. Expectations of 
products of spin variables can be expressed as quotients of contour parti- 
tion functions 1,61 

( ) 21s''s*(X'U) 1.21) 
E~.%~ 1-I ~(x) = 2 / , . . j . ( x  ) 

.x'E U 

where ~n. J. o is the expectation with respect to the Gibbs measure associated ~ A .  X 
to the Hamiltonian (1.4). 

We anticipate a result which will be useful in the following. 
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Proposition 1.2. 
that X c Y and let 

Let X, Y be two finite sets of dual bonds such 

2/~, J ( X ) 
F(J) = 2a" J (y )  

Then F(J) is nondecreasing in each variable J(x, y) such that [x, y]  * r Y\X.  

Proos Let A be any finite set of sites such that Y c g*. Then, by (1.18) 

ZP*s* '~  X)  
F(J)=zP*,J*.eJ(A ' y) I-[ cosh[[3*J*(x, y)] 

e =  [x. y ] * ~  Y\X 

Thus, if e r Y \X ,  we have 

1 d 

[3* dJ*(x, y) 
E IJ''J'" ~a (x )  a(y)  - E~['r J' ' ~ o'(x) a(y) log F( J) = A. X 

which is nonpositive by the second Griffiths inequality, l 

Contours with Free BoundaIT Conditions. A configuration a in A with free 
boundary conditions produces a collection of contours _y = ~#~(a) such that: 

(i) y ~ g*\SA. 

(ii) Each contour y~y  is either closed or open with its boundary 
6y~ V(6A). 

So we let gA = #* \0A and for an arbitrary set of dual edges X and any 
U c c  7/, we define 

c(x ,  = u) = U c (x ,  v), 
V c  U V c  U 

There is a two-to-one mapping _y~---, y' from C*(g*) to C*(OZA, 
given by 

y' = Q?~. ),)/SA (1.22) 

where it is understood that the LHS of (1.22) must be partitioned in the 
proper way according to the splitting rules. In this way we can write, for 
each simply connected A, 

C*(X, = U)= U c*(x, v) 

='V(6A)) 

Z p. O(A ) = 2e p IcE.,I ~ w(y) 
y~C*(~, ~'t(,SA)) 

The following proposition will be used later in the paper. 
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Proposition 1.3. Let A be a rectangle, OeQA, and let y be a con- 
tour in ff~(a).  Then: 

(i) If y is open, there exist 2 '~ C(g*\A"(y), fly) and 2e  C(g*) such 
that 2 = y w 2 '  and 2e(g+Ca). 

(ii) If y is closed, then yeaJ~(a) .  

The proof is more or less straightforward and we omit it. We just 
observe that the result is false for arbitrary shapes of A. 

1.4. The  D y n a m i c s  and Our  Resul t  

The stochastic dynamics we want to study is defined by the Markov 
generator 

(L~,f)(a) = ~ c(x, a ) [ f ( a " ) - f ( a ) ]  (1.23) 
x E  V 

(in this subsection we consider fl and J fixed and we mostly omit them) 
acting on L2(Q, dfl~), where 

~a(y) if y # x  
a"(y) = [--a(y)  if y = x  

In (1.23) a denotes a configuration on the whole lattice 7/2 which, in view 
of (1.7), agrees with the b.c. q on W. In general we identify L2(s dp'~.) with 
L~-( [2 v, dld[,). The nonnegative real quantities 

c(x,a), x~Z'-, aes 

are the transition rates for the process. 
The assumptions on the transition rates are: 

(Hi) Nearest neighbor interactions. If a(y)= a'(y) for all y such that 
d(x, y) <~ l, then c(x, a) = c(x, a'). 

(H2) Attraetivity. If a ~< a' and a(x) = a'(x), then 

a(x) c(x, a) >~a'(x) c(x, a') (1.24) 

(H3) Detailed balance: 

exp[ -flH~.,.l(a(x)) ] c(x, a)=exp[ -flH~.,.l(-a(x))] c(x, a x) (1.25) 
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(H4) Positivity and boundedness. There exist c,,(fl) and cM(fl) such that 

O<c,,,(fl)<<.infc(x,a)<~supc(x,a)<~cM(fl)<~ (1.26) 

Two cases one may want to keep in mind are 

and 

where 

c(x, a) = min{e -/~J-'H{~', 1} 

c(x, a) = [ 1 + exp( f lA, .H(a)  ) ] - 

z/x H(a)  = H~.,.I ( -- a(x))  -- H~l.,.l(a(x)) 

(H~)-(H4) garantee that there exists a unique Markov process with semi- 
group T'~,(t) and generator L'~. Here L'~, is a bounded operator  on 
L2(I2, d/~).  The process has a unique invariant measure given by lt'~,. 
Moreover, ll'~v is reversible with respect to the process, i.e., L'[, is self-adjoint 
on L2(g2, d/t'~,). Given cr~12, we denote by a, the random configuration at 
time t evolving according to the process, so that 

E v f ( a , ) = f f ( a , ) d P ~ . = ( T ' l v ( t ) ) f ( a ) ,  Vcr~C2 such that av, .=qv, .  

E" and P~ stand, respectively, for the expectation and the probabili ty 
measure associated with the process starting from a v  at time zero and sub- 
ject to b.c. a v,.. 

The attractivity assumption implies (see, for instance, ref. 10): 

1. I f f i s  an increasing function on g2 v, then T'~.(t) f i s  also increasing 
for all t >~ 0. 

2. If p~, P2 are two probability measures on C2 v such that p~ ~<P2, 
then p~ T'~(t) <~ P2 T'~v(t) for all t ~> 0. 

3. For any a, a '  in g2 such that a ~< a' ,  the standard coupling ~ ~o~ p~; ~' 
of a, ,  cr, is such that "" ~' ' P v  {a,~<a,} = 1 for all t>~0. 

This last property allows us to define a standard coupling of two 
Gibbs measures which preserve the order of  the b.c. Take in fact ^'~''1' Vv as the 
unique invariant measure of the (standard) coupled process (or,, a',). Then 
we have: 
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1. #~;"'{(a, a'):  a = a o }  =P~,(ao) for all ao ef2v.  

2. #~,r a ' = a o }  =p'['Aao) for all ao eDv. 
3. Ifq~<l?', then r =1.  

A fundamental quantity associated with the dynamics of a reversible system 
is the gap of the generator, i.e., 

gap( V, q) = gap(L'~A = inf spec( -L'~5 [" ~ • 

where ~" is the subspace of L2(D, dp'[A orthogonal to the constant func- 
tions. The gap can be also characterized as 

gap( V, q) = inf g'[t(.f, f )  (1.27) 
.r~/--'to. dl,],) Var 'b(f)  

where ~ is the Dirichlet form associated with the generator L, 

g'~(f, f )  = �89 y" ~, /t'~,(a) c(x, a ) [ f ( a " ) - f ( a ) ] ;  (1.28) 
a ~ . Q  x ~  V 

and Var/;~ is the variance relative to the probability measure p'[.. 
The main result in this paper is then as follows. 

T h e o r e m  1.4. Assume (H,)-(H4).  Iffl>fl,., then 

lim [ 1 loggap(Qz, fl, j = l , ~ ) ] = r p  
L ~  f l (2L+ 1) 

2. STRATEGY OF THE PROOF 

2.1. Lower  Bound  

We proceed, following Section 4 of ref. 11, in three steps as follows. 

Step 1. We replace the free boundary conditions with very week +e  
b.c., where e is a small, positive number that will be sent to zero after the 
thermodynamic limit L--, ~ .  

Step 2. We prove the sought result for a generalized Glauber 
dynamics in which single sites are replaced by suitable blocks. This mean 
that, given a priori a covering { Q,.} of Vt, at each updating of the dynamics 
the spin configuration is changed in only one block Qi and there it is 
replaced by the equilibrium Gibbs measure of the block given the configu- 
ration outside it. It turns out that a convenient choice of the blocks in our 
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case consists of long and thin overlapping rectangles with basis L and 
height 2eL + 1. 

Step 3. We relate the gap of the single-site Glauber dynamics to that 
of the generalized block dynamics in such a way that the estimates 
obtained in step 2 are not significantly changed when we take the limits 
L ~ oz and e --* 0 in the stated order. 

More precisely let J, =J~(Qc)  [see (1.6)]. Then, using the varia- 
tional characterization of the gap in terms of the Dirichlet form (1.27), one 
gets 

gap( Qc, fl, 1, ~ )  >>. c,,, e -  �91 2 L  + 1,  gap( QL, fl, J~, + ) 
CM 

where Cm and CM were defined in (1.26). In order to prove the lower bound 
on the gap, it is therefore sufficient to show that 

1 
lim lim sup 
~-o L . . . .  f l (2L+ 1) 

log[gap(fl, QL, J~, + )] ~< r~ (2.1) 

To establish (2.1) we take M=LeLJ  and we introduce a covering ~ =  
{ Ri} f= i of QL by means of rectangles 

Ri = QL. g + (0, h i )  

where the h; are chosen in such a way that the height of the overlap 
between any two consecutive rectangles R; c~ Rs+ 1 is at least M/2 and not 
greater than M (remember that the height of each Ri is 2 M +  1). So we 
assume that 

hi = - L + M ,  h x = L - M  
(2.2) 

M/2 <~ h~ - hi+ 1 + (2M + 1 ) = height of the overlap ~< M 

Let L~ J~'+ be the new generator 

K 

(L!~S~'+ f)(t7) = Z Z l ~ / " ~ ( q ) [ f ( a " ) - f (  a)] 
i= l  tlE~2Ri 

(2.3) 

Here, for any r /eQn, ,  a '~ denotes the configuration in ~r which is equal 
to q in Ri and to a in QL\Ri. The generator L~ g~'+, in the sequel refered 
to as the block-dynamics generator, is symmetric in L2(g2QL, dll~/~'+) and 
we will denote by gap(~,  fl, J~, + )  the absolute value of its first nonzero 
eigenvalue. 
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Theorem 2.1 in ref. 11 relates the gap in the spectrum of the generator 
of the single-site Glauber dynamics to the gap of generator L~ J~'+ and 
states that 

1 
gap(QL, fl, J~, + ) >/2M(2L + 1 ) C"'e--4f~2M+ l~ gap(~t, fl, J~, + ) (2.4) 

where c,, = inf,, .,. c(x, a). 
If we now combine (2.4) with the definition of M, we conclude that 

(2.1) follows once we can prove that 

1 
lim lim sup 
~-o L ~  fl(2L + 1) 

log[gap(~,  fl, J , ,  + )] ~< rp (2.5) 

Remark. It is important to remark at this point that our choice of 
the parameters M and e is different from that of ref. 11. There in fact the 
only varying parameter was the size L of the square QL and the numbers 
e, M were directly related to L through the choice 

e=L-1/2; M=L1/2+a 

where 6 ~ 1 was a fixed number. Here, unfortunately, we cannot do that, 
and we are able to take the limit e ~ 0 only after the thermodynamic limit 
L ~ ~ .  The reason for this difference is that, for fl close to the critical 
value tic, we are still unable to controls the moderate fluctuations of an 
interface of length L between the plus and minus phases, i.e., fluctuations 
that occur on a scale L ~ with l < 0 c <  1 (see, e.g., the proof of Proposition 
3.1). At very low temperature the powerful methods of the cluster expan- 
sion are available and they give a detailed control of all fluctuations, from 
the normal ones occurring on scale v /L  to the large ones on scale L. I-'~ 

The advantage of studying the block dynamics instead of the single- 
site dynamics is that the relaxation time can be estimated from above via 
natural probabilistic methods in a rather precise way. Such a probabilistic 
approach was developed in Section 4 of ref. 11 and its implementation 
requires only two key equilibrium estimates described in the propositions 
below. Once these estimates are at hand, then (2.5) follows. 

Let us briefly recall the argument of ref. 11 in order explain the different 
roles played by these propositions. 

Let us couple the processes starting from the two extreme configura- 
tions which consist of all pluses and all minuses, respectively, in such a way 
that their order is preserved during the evolution. It is easy to show that 
the relaxation time of the block dynamics can be estimated from above by, 
roughly speaking, the inverse of the probability that, after updating in 
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increasing order the blocks Rt . - -RK,  the two configurations have become 
identical. In order to estimate from below this probability it is important 
to distinguish between the first updating of R~ and the subsequent ones. 
In the first updating, in fact, the two new configurations will have a strong 
tendency to disagree in R~ since the typical configurations of the two Gibbs 
measures l l~  J~" [0], lz~iJ~.+ in R~ have the structure of the minus and plus 
phases, respectively. However, using Proposition 2.2 below, one can show 
that the probability of agreement in, e.g., R2\R  t is not smaller than 
exp[ - f l ( rp  + 14e)(2L + 1 )], for any fl > fl,. and any L large enough. On the 
contrary, once the first updating has forced, via a large deviation, the two 
configurations to agree in R2\R~,  then, thanks to the weak +e b.c., the 
next updatings will monotonically enlarge the region of agreement to the 
next blocks R2, R3 ..... R h. with probability exponentially in L close to one. 
The key technical result to establish this second property of the block 
dynamics is Proposition 2.1 below. 

Given these two results, one can conclude that the probability of 
finding complete agreement at the end of the sequence of updatings is, 
roughly speaking, of the same order as the probability of agreement in the 
first updating, i.e., not smaller than exp[ - f l ( r /~+ 14~)(2L+ 1)] and (2.5) 
follows. We refer the reader to Section 4 of ref. 11 for more details. 

Proposi t ion  2.1. Let f l>f lc  and let E,cr 1]. Given a positive 
integer L, we set M = I_eL_J, k = L_eL/IO_J. Let A = Qz. u + (0, h) be a vertical 
translate of Qc, ,~t contained in Qt_ and let ,4 be a vertical translate of QL. N 
(with M~< N < L) such that the bottom sides of A and ,~ coincide. We also 
let 

Abo t = {X = (X l ,  X2) E A: x_, ~< M--  3k + h} 

Take J~ = [] J~ (QL). Then there exist Lo=Lo( f l ,  o~,e) and m = m ( f l ,  o~,e) 
such that if L/> L 0, we have the following: 

(i) If the horizontal sides of A do not touch the horizontal sides of 
QL (and so the boundary coupling is identically equal to one on these 
sides), then 

,Lt/JiJ"+{ff(X) = q- 1} -~t~'J~'t~165 + 1} ~<e .... z. VXEAbo t (2.6) 

(ii) We have 

,tt~'J" + { ff( X) = -k- 1} .P'J~" + ~ e .... L --~.~ {a(x) = + 1} VX~Abo t (2.7) 

Remark. The intuitive meaning of the proposition is the following. If 
we consider a rectangle as above, then the typical configurations of any 
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associated Gibbs measure with full plus b,c. on the bottom side and weak 
e + b.c on the lateral sides will coincide with those of the Gibbs measure 
with full plus b.c, also on the top side, at least on all the sites not too close 
to the top side, 

Proposit ion 2.2. Under the same assumptions as in Proposition 
2. I, let A~op = A\Abo~ and let I'E~ be the unique open contour produced 
by the configuration a with boundary condition [0]. Consider the event 

~g F(L, e) = { a ~ D~: F[~ c gA,op} 

Then there exists Lo = Lo(fl ,  e) such that if L >/L0, then  

P~i J~'" E~ L, e)) >I exp[ --fl(r/j + 14e)(2L + 1)] (2.8) 

The proof of the propositions is postponed to Section 4. 

2 . 2 .  Upper  B o u n d  

Following ref. 11, let f (a )  be the trial function 

where 

L,(~) = z { m l , ( G )  > 0} - z{.,l ,(~) < 0} 

1 
m.,(~) -- 735 ~ a(x) 

(2.9) 

If we plug fj, in the variational characterization of the gap (1.27), we get 

gap(QL, fl, ~ )  <~ 4cg(2L + 1) 2 / t ~ {  ImQL(a) I <~ 2/IQL [} 

The upper bound then follows once we show that, for any fl > fl,., 

(2.10) 

lim i n f L  ... .  fl(2Ll + 1 ) l~ [ P ~  {[mQ'(a)[ ~< [ ~ L  I t ]  >~rp (2.11) 

In the framework of the rigorous Wulff construction, at very low tempera- 
ture, Shlosman ~7~ computed the logarithmic asymptotics of the probability 
of rare events like {mQL(a)=m} when m e ( - m * ,  m*) (m* denotes the 
spontaneous magnetization) and, in particular, he proved (2.11). We are 
going to show that (2.11) holds at any fl>>,fl,, i.e., that the following result 
holds. 
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Proposition 2.3. Let fl>fl,, and me( -m* ,m*) .  Then 

where 

lim inf 
I 

log[ ,u~{mQL(a ) = m} ] >/q~(m) p(2L + 1) 

1 (m*(D)- ( lmlvm,) )  '/2 
~o (m) = 5 ' ~ -2-~;*D) 

where the constant w is the value of the Wulff functional W~ on the Wulff 
curve (see, e.g., ref. 17 or ref. 2) and the singularity point m~ satisfies the 
equation 

-- It.' = T B 

2 \ 2m*(fl) J 

that 

The proof of the proposition is postponed to Section 5. 

Remark. One can actually strengthen the above proposition by proving 

l im lim 
c ~ O  L ~ ,zr. 

1 
l o g E l t ~  { ImQ,(a)- 1,ll ~ e} 3 = ~(m) 

fl( 2L + 1) 

We decided, however, to omit the proof of the necessary lower bound since 
it follows without any significant change the proof given in Section 5 of 
ref. 7 (see also ref. 20). It is interesting to remark, however, that, at least for 
all values of m in the interval [0, m,] ,  the stronger version of the proposi- 
tion follows at once from the result of the first part of the section. In fact, 
if in the variational characterization of the gap we replace the trial function 
f(~r) defined in (2.9) with the new function 

g , , , , , , ( a )=z{m, , ( r  -x{m ,(a) <m}, m~ [O,m*) 

we obtain 

Since 

Var~(gQL., , ,)  _< 2 
4CM( 2L + 1) 2 gap(QL' fl' ;2:)<~lt~ { ImeL(a)-m[ ~ I--~LI} 

lim sup ,tP" o ,. ~,_ {mQ~(G)~[--m*+6, m*--~]} = 0  
L~oc. 



2D Stochastic Ising Model 77 

for any 6 > 0  and any fl>fl,., ~'~ one gets that limL_ ~_ Var(g,,,)= 1. Thus, 
using the correct lower bound on the gap proven in the first part of the 
section, we conclude that 

1 
lim sup 

L - ~ fl(2L + 1 ) 
,tp, o 2 ] 

log ic  QL Ime~(a)-ml~<~Q-~ ~<rp 

which is the same as the lower bound proven in the proposition above if 
, ,E  [0, ,17,]. 

3. FIRST BASIC RESULTS 

We consider the system on a rectangle QL. M with [k]  boundary con- 
ditions [ see ( 1.5 ) ]. We let 

F ~ ] ( a )  = the unique open contour produced by a configuration a (3.1) 

The aim of this section is to show the following result. 

P r o p o s i t i o n  3.1. Let fl>fl,, and let e,c~e(O, 1]. Given a positive 
integer L, we set M =  LeL], k=keL/lO],  A(L)= QL, M, and J=J~(A)  [see 
(1.6)]. We also let 

V(L)= { x = ( x l , x 2 ) e A ( L ) :  x 2 1 > M - 2 k +  1} 

and consider the event 

F(L,e)={a~I2A: to] F ,  (a) = ~'*.,cl} 

Then 

lim inf[ 1 ] L - ~  --~logll~',~,t~ '') --m(fl, o(,e)>O 

Proof. Since F(L,e) is a positive event, we can use the FKG 
inequality and write 

ll(]',~,t ~ J( F( L, e)") <<. ll~A',~ f f  J( F( L, e )") 

Then we notice that, letting R = {x = (x~, x_,) E A* : x 2 = M -  2k - 1/2}, we 
have 

F(L,e)"c  (aef2A:  FE,*](a) c g*( , , }"=  U {aeg2A" F!k](a) ~x} 
N E R  
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where by F ~  x we improperly mean that one edge in F has x as one of its 
endpoints, i.e., that ~"(F)~ x. Using now Lemma 3.2 and Propositions 3.6 
and 3.7 given below, one can easily finish the proof. | 

We start by rewriting the quantity we want to estimate in terms of 
two-point functions in the dual lattice. Letting, for simplicity, 

4 . > *  ~'p', ~', ~ = ~I,, ,LI ~') 

we have the following result. 

L e m m a  3.2. Let fl > 0, J~> 0, let L, M be two positive integers, and 
let A = QL.M. Choose now an integer k with 0~<k~<2M+ 1. Let a and b 
be the two extreme sites in the ( k +  1)th row (from the top) in A*, i.e., 

a = ( - L - � 8 9  M + � 8 9  b = ( + L + ~ , M + ~ - k )  (3.2) 

Then for each x E A* we have 

p[j.j. (a(a)  a (x ) )  * ( a ( x )  a(b))  * 
A [kl{aeg2,," F ~ l ( a )  ~x}  <- (a(a)  a (b) )*  (3.3) 

Proof. If  x coincides with a or b, the statement is trivial, so we 
assume x,/=a,b. For all ae,Q..j, we let F=F[(1 (a ) .  If F 3 x ,  then it is 
possible to represent F as 

F =  (el ..... el, el+ i ..... e,,,) 

in such a way that a e6el ,  b ~ 6e .... and et is the first edge whose boundary 
contains x. We then let 

Fi = (el ..... el) and F2 = (el+ l ..... e,,) 

Fl is thus an open contour in oF.j* with boundary {a, x}, but it has the 
additional property that there is exactly one edge e in Fl such that fie ~ x, 
i.e., F~ cannot come back to x after a first visit. We denote by C(~ '*, {a, 3} ) 
the set of all open contours which satisfy this further requirement. 

As far as F 2 is concerned, we observe that, since F is a contour, then 
none of the edges of F2 with the exception of perhaps the first lies in A(F  l ). 
Let then ~ be the unique forbidden edge of e / (not equal to e~) which 
originates from x. Then it is possible that e~+ i = ~ unless ~ is forbidden by 
another edge in F~. For  this reason we claim that the set of all possible 
pairs (Fi ,  F2) is equal to the set [recall (1.14)] 

{(r ' ,  r " l .  r '  e c(~,*, {a,-'-t ), r "  ~ c ( ~ * \ ~ ' ( r ' ,  .,1, {x, b} I} 
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Then we can write the "numerator" of the LHS of (3.3) as 

= ~ w(e) 2(~'*\3(F)) 
FE CIr.*j, {a, b} ) 

F-~x  

= ~ w(r , )  ~" w(e,)  2 (g*  \z t ( r ) )  (3.4) 
FI ~ Clg*l. {a. 6"} ) F2e  Cld'*I\J'(FI. x), Ix. b} ) 

In general zl'(F~, x) w A(F 2) r A(F~) u A(F2) = A(F); nevertheless, if 7 is a 
closed contour which does not intersect A'(F~, x)uA(F2),  then one can 
check, by considering all cases, that ), does not contain the possible extra 
edge # forbidden by F. So we have 

2(N'*\A(F)) =2 (g~ \ [A ' (F , ,  x) u A(F,_)]) 

As a consequence, the product of the last two terms in (3.4) can be written 
a s  

2/~' J(g* \zV(FI, x), {x, b}) 

which, by (1.21), becomes 

A+, ~',~'lr,..,-~,~, - , ~(b)) 2(g*\A'(F~, x)) 

Using the second Griffiths inequality, we obtain 

LHS of (3.4) ~ (~(x)  r ~ w(F,) - "* * Z(g~,\A'(F~, x)) (3.5) 
Ft E C( e;.~. { ,~+,. ~- } ) 

A straightforward check shows now that the simultaneous substitution 

. ,  1 . . . . - } ) +  . { , .  c (  ,~.,. c( ~ *, x} ) 

z l ' ( F  1 , x )  ~ A ( F I )  

has no effect one the RHS of (3.5). Thus, using (1.21) again, we get 

2( #* ) 
~+(~,~. [+ ] { r~ x} ~< zr..,. [~1(A) (~(a) a (x ) )*  (a (x)  ~(b))* 

which is equivalent to (3.37. II 

The next proposition is a fairly general inequality which will be used 
later. We use ideas contained in ref. 14. 
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Proposition 3.3. Let A ccT/2, x~A, andy~O+A.  Assume there is 
a family of nested subsets 

A = A o ~ A I = - - -  ~ A , , ~ x  

For each i =  1 ..... n, let Y;= O+Ai c~ (A w {y} ), and let U~ be an arbitrary 
subset of Yv Let I J l~ ,=sup  ..... ~,_J(u,v). For each r~ /2  we define the 
boundary conditions 

Then we have 

~r(u) if u e (A w { y} )" 
( r+ ) (u )  = (-I- 1 if ueAu{y} (3.6) 

Elt~'J'~+{a( x ) = l  } - - a~ ' s ' r - {a (x )=  1}] ~< l-[ d, (3.7) 
i = 0  

where 

di = 1 - (�89 -8a IJl~)2 lu,,,r 

x [ 1 -  ~' [l~'/'r+{~(u) =1 } --~'A,"/s'~'~-{a(U)=I}]] 
u E  Y,+ t \  Ui+  i 

Proof. In this proof/~ and J are fixed and we usually omit them. Let 

l r -  ch=12;,+,{a(x) = I} --Z , , , {a(x)= I} 

[notice that in particular ao is the LHS of (3.7)]. Then we claim that 

ai <~ biai+ l (3.8) 

where 

bi = inf bi(v) 

bi(v) = v{q # q' on Yi+,} = v{ 3z ~ Y;+. such that q(z) ~ q'(z)} 

and K(H~, ll2) denotes the set of all couplings (joint representations) of/ t  l 
and/1_,. In fact, by the DLR property, for each coupling v ~ K(H~,  t l~  ), 

a,= ~, v(r I, q')[/~3,+,{a(x)= I} -l,,~;,+,{a(x)= i } ]  
q, r f  ~ f2 

Since the sum is actually restricted over those r/, q' which agree with r out- 
side A, the quantity inside the brackets vanishes unless r/4:~/' on Y~+I and 
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(3.8) follows. So, what is left is to show that there is a coupling 9 such that 
b~(~-) ~<d~. To do that we apply the so-called "surgery technique ''~3~ to the 
standard coupling ~ as in ref. 14, i.e., we define for each r, r' �9 1-2 

V A i  (O-, f i t ) =  ~ . . . .  ' VA, (q, '/')#'b~+,(a)l V,+~ta 
q, q'  

17 "'c K' ~ ~" It can be shown (see, for instance, ref. 14) that ~J, �9 t/~A,,~Ap" Then, 
letting W~= Y~\U~, we get 

~ + ,  r _  __ o.t b,(v~,+"-) - - I -  A, {f-  on Yi+,} 
q ~< I --min ([tu~+,{f(x)= l Vx�9 Ui+,} )2 f . . . . .  i ,~_f, A, t~- -  on W,+I} 

q e l 2  

Hence, by FKG,  we have 

/~'b,+,{f(x)= 1 Vx�9 U,+I} ~> H /~,,+,{cr(x)= 1} 
X E  Ui+ I 

>/[�89 IJI-- ] lu,+,l 

On the other hand, 

(3.9) 

f ; ~ ' ' - { a = a '  on Wi+I} 

>/1-- 
XE I'IQ+ I 

= 1 -  Y. 
x ~ I.l') + 1 

0;, I. ,-{ f(x)  f'(x)} 

E/t2{f(x) = 1} f ( x ) =  1}3 

which, together with (3.9), implies bi(q~, +' 3_)~di. | 

We now use previous proposition to show the following result. 

Proposition 3.4. Foreachfl<fl,.andoc>Othereexistm2(fl,~)>O 
and q2(fl, ~) such that, if A = QL. M and J is a set of couplings satisfying (i) 
sup.,.,.J(x,y)=lJ[~<~o~ and (ii) J(x ,y )=l  if {x,y} c~(A\OA)~O, then 
for all r � 9  and for all x, y � 9  such that [ x - y l  >~q2(fl, ~), we have 

Cove" J' ~(f(x), f (y ) )  ~< exp( - m 2  ~ -  Yl) 

E ~' J' o f (x)  f (y )  ~< exp( - m z ~ - Y[ ) 

(3.10) 

(3.11) 

Proof. Choose x and y in A and r �9 Let then 

�9 , (r(u) if u�9  
r+-tu)=~ __1 if u � 9  

822/85/1-2-6 
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Let also A.,, = A\{ y}. A straightforward computation shows that 

Cov~ 's" ~(a(x), a ( y ) ) = 4 D I t ~  "J" 3{ a(y)= + 1} lt/~ "J" ~{ a(y)  = - 1 }  

where 

D=/~,J.~+{~(x)= +I}  -~,~;5~-{~,(x) = +1} (3.12) 

Let now s = l x - y  I and k=(L_v/2J - 1 0 )  v 0. It is possible to find k 
positive integers 1~ ..... lk such that: 

(a) li>~li+l +k and s>~ll +k. 

(b) If we set Ao=A.,, and, for each i = 1  ..... k, A i - A n Q t , ( x )  and 
Yi=O+A~ hA,  then we have 

# { u e  Y~+.:d(u, OA~)=j} <~2 V j ~ k - 2  (3.13) 

For each i--- 1 ..... k and u e A~ we define Bi(u) as the largest square centered 
on u, contained in Ai and such that J(v, z) = 1 if either v or z is in Bi(u). 
We have then 

B~(u) = Q ~ , , , , ( u )  

where 

o~i(u) =d(u, OAi)- 1 

Because of the definition of the B~(u) we have 

/~.'~,".'+ {,~/.)= i} -~,~.-'. ~-{,~(~,)= l} 
-<-/"s="+{a(u)--1} , , /"J="-{a(u)=l} 
' ~  kr  B i ( i t )  --t~Bilu) 

Thanks to Theorem 2 in ref. 5 we know that there exist C(fl) and m~(fl) > 0 
such that, for each u e A;, 

P,+ /in,,,,,{ a ( u ) =  1} - # g ) L , { ~ ( u ) =  1} ~< C(/~)e - ' ' ' ' 4 ' ' ' '  (3.14) 

We take an integer r(fl) such that 

oc, 

C(fl) Z e .... "P)J <~ �89 (3.15) 
j=r(fl) 

and let 

U, = {u e r,: d(u, OA)~,-(p)} 
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If we take L large enough, we can assume k ~> r + 2 and, thanks to (3.13), 

IU~[ ~<2(r+ 1) (3.16) 

In this way, letting W~= Y,\U~ and using (3.14), we obtain 

A,- Z 
t tE  H"/+ I 

~ C(~)e .... "P)~# {ue  W,+t:o~,(u)=j} 
j = 0  

By (3.13 ) and the tr ivial bound [ W, [ ~< 4(2l, + 1 ), we get 

k - 2  

A , ~  ~ 2C(/Y) e-"" (P) i+4(21,+t  + 1) C(/Y) e .... ,r 
j ~ r  

which implies 

A , < ~  (3.17) 

if s = Ix - Yl >i- q2(fl, ~) with qz(fl, o~) large enough. 
By (3.12), Proposition 3.3, (3.16) and (3.17), we find 

D <~ [ 1 - !tl-,,-slJlsl" ~-"+ |]k 
2 ' , 2  ~ J 

which gives (3.10). Inequality (3.11) is obtained by taking J(u, v ) = 0  if 

[u, v]* ~ A .  I 

The previous result can be improved to get an exponential decay, 
thanks to Simon's inequality. 

C o r o l l a r y  3.5. For each fl<,8,, and 0~>0 there exist m a(f l ,~)>0 
and C3(/Y, ~) such that, if A and J are as in Proposition 3.4, then for all 
x, y 6 A we have 

.... ~ ( 3 . 1 8 )  ~#,s.~tr(x)~r(y)<~C3e . I.,-- >,1 

Proof. 

and let 

Let 1o = lo(fl, ~) > q2(fl, ~) be such that 

4 (2 lo+1)e  .... 2-s%_=b<l 

f ( u , v ) = E ( ] ' s ' ~  u , v ~ A  
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Theorem 2.1 in ref. 18 says that, if Ix - Yl > lo, then 

f (x ,  y) <~ Y. f (x ,  z) f (z ,  y) 
: e A :  I : - x l  =/o 

Iterating this inequality, we get 

f (x ,  y) <~ b Lz~' I-, -., 'l_J 

which proves the corollary. II 

Proposition 3.6. For each fl<fl, . ,~>O, and t > 0  there exist 
C4(fl, o~,t) and m4(fl, oqt)>O such that, if A=QL, M and J is a set of 
couplings satisfying (i) sup.,., .,.J(x, y )= IJl~_ ~<~ and (ii) J(x, y ) =  1 unless 
[let x = ( x ~ ,  x2), y = ( y ~ ,  Y2)] xl =y~ = - L  or xl =y~ = + L ,  then for all 
x, y e A  such that [xz-Y21 >~t [ x i -  y~[ we have 

E~'Z Oa(x) a(y) <, C, e x p ( - f l * r p .  Ixl - Yll - m 4  Ix2- Y21) (3.19) 

where r/j. is the surface tension at zero degrees. 

Proof. The idea is to use the Lieb improvement of Simon's inequality 
in order to get rid of those sites where J ~ 1 and obtain the surface tension 
in this way. 

Define 

f ,  ltu, v)=E~A'Z~a(u)a(v), u, v s A  

If ] x ~ - y ~ ] < 3 ,  then (3.19) is a consequence of (3.18). Assume then 
Y l / > x l + 3  and let 

Define also 

Bi = { z=(z , ,  z,_)eA: z I =x  L + 1} 

B 2 = {z--~ (.7.1, z2)eA:  z I = Yl- 1} 

A ' =  { z = ( z  1, :_,)eA: : ,  >~x] + 1} 

A" = { z = ( z l ,  z , ) e A :  x I + 1 ~<z I ~< 3 ' ] -  1} 

By Lieb's improvement (l~ of Simon's inequality (as given in Theorem 2.2 
in ref. 18) and by Griffiths' second inequality we get 

f,~(x,y)~< ~ s E ~ f,,(x,z)f,,,,(z,u)f,,(u,),) 
: ~ B I  : ~ B I  tIEB2 
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Since J = 1 on A" we can write [ using (1.10) and (3.18) ] 

fA(x, y) <~ C3(fl, ~)2 ~ ~ exp[  - f l * r ~ . ( z - u )  
"-.~.BI u~.B2 

- -  m 3 ( f l ,  0r IX --  .7[ -t- lit - -  Yl )]  (3 .20)  

Let 0 ~< ~9 ~< n/2 be such that  

I-._-u_. I = 1.71-u, I t a n 0  

The  RHS of  (3.20) can be writ ten as A ~ +  A,_, where A~ is the cont r ibut ion  
of  those terms with 

t A 1  
sin(~9) >/s = 

100 

and A_, is the sum of  the other  terms. Using (1.11), we get for each te rm 
in A~ 

/?*r : . (z  -- u) + m3(/L 00( Ix - zl + lu - Yl) 

~> f l * r p . ( 0 ) I - - i - - u ,  I + f l  *Ds~- 1---  ul_, +flm3(fl, ~ ) ( I x - - I  + l u -  y l )  

>~D*r/j. l x , -  y , -  2l +@*Ds'- ^ fl g )  lx2- y,_l 

D13 , 
+ fl T ( I x -  .Tl + lu- y]) 

while for the terms in A2 ( r emember  that  I x 2 - Y 2 1 ~  > t I x ~ -  y~[) we write 

/~*r/~.(- - u) + m3(/L ~)( Ix - -I + lu - Yl) 

f/ ' l  3 
>:/~*r/.(0) I-1-"~ I+# T (Ix._-y_. I -  lu_.--~_ I) 

+/~-2(Ix--I  + lu- yl) 

m3 ~ D13 
>-- #*ra. Ix , -y ,  -21 + P 7  Ix_.-y21 +p~-(Ix-z t  + lu-  3'1) 

In this way we obtain  

A ~ + A_, ~< Ca exp[  - /~*r# , (O)  Ix, - y~ - 2] -- tim4 Ix_, - Y2 l] | 
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Proposition 3,7. 
3.1, we have 

Cesi et  al. 

Under the same hypotheses as in Proposition 

lim inf [ 
L~,z L 

1 
( 2 L +  1) 
- -  log ~|.1~1~*' s*. ~ a(a) a(b)] ~< flrp 

Proof. We just need to observe that, thanks to the second Griffiths 
inequality, since J*/> 1, 

a(b) >~ E vl t~" a(a) a(b) 

which, by duality, is equal to 

Z~tk](L) 

Zq; +(L) 

The proposition then follows from the definition of surface tension, i 

4. PROOF OF PROPOSITIONS 2.1 AND 2.2 

4.1. Proof of Proposition 2.1 

To prove part (i), let V be the top portion of A of height 2k, i.e., 

V= {x = (xl, x,_)eA: xz>~h + M - 2 k  + 1} 

and let F(L, ~) be the event 

F(L, e)= {a ~ n , ,  /-'!~~ = d=*,} 

Then, using FKG, one shows (see the appendix in ref. 11) that for any 
x e m bot 

II J + ,tll. J,[o]{ <~,u~,J.[O](F(L, ) ILl " {a(.x)= + 1 } - - , . , |  a(x)---- +1}  e)") (4.1 

which, combined with Proposition 3.1, yields (i) of Proposition 2.1. 
To prove the second inequality we observe that, using the DLR equa- 

tion and a standard coupling argument, it is sufficient to prove the required 
bound only for x = (x~, x_,) with xz = h  + M - 3 k .  We set 

, j ,  q, =p(~'J '"{a(x)= + 1} -p~ ' , s "" ' {a (x)=  + 1} 

and, for simplicity, we denote by [] the coupling J,,~ and so on [see (1.6)]. 
There are three cases to consider. 
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Case I. 6bA = 66A= 6bQ L. The LHS of (2.7) can be written as 

+ r ~ IL + Z" e~ +F~tt  [~-~ +] ~ [ ~  +] =LA,, e0]] +[ A,, + ] LA,,+] --A+~+c 
A and C can be estimated with (2.6) (for C one has to flip .,1 upside 

down), while B is nonpositive. 

Case 2. 6~,A =6bAy=cS~Qt and 6,AY=cS, QL. In this case we write 

LHS ~ (2"7)= [ AA-''II ++ ] = A + B  

Case 3. 6 b A = 6 b Z r  and O,=6,QL.  We have 

;] LHS o f  (2.7) = 
,~n ATII[0] +L All + ] A I I [0 ]  

~ A  I 

4.2. Proof of Proposition 2.2 

Case 1. Ob A V6t~bQL. In this case, by monotonicity, 

LHS of (2.8)>~Iz,,(F(L, e); fl, J~l(A), [0 ] )  (4.2) 

(the inequality is strict only if 6,A = 6, QL). The RHS of (4.2) tends to one 
as L--* oo by Proposition 3.1. 

Case 2. 6bA =6bQc. We first observe that 

where 

p#. s~. e - 8#u2L + 1 ),,#. J,. [o](H L, e)) ..,~ t~ e))/> ~A 

on the bottom side of A 

elsewhere 

Define now a~b as in (3.2) with k =0.  Let also denote with by A and B the 
two subsets of A \ J ' ( F )  that are respectively above and below f .  Then we 
can write 

Z #" - (A)  Z #' i~. +(B) 
/t~ "J'' [~ e)) = Y' ws,(F) (4.3) 

r~ c(~1,op, I.. bl ) Z#' J'' [~ A ) 
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Notice that for any s  gA,o., we have wj~(F)= w(F).  Using now the spin- 
flip symmetry, we obtain 

ZP"z" t~ A ) ~ exp[ 2fl(15 ~AI + 15.AI ) + 2fle 16bAli Z/J"z" - ( A ) 

<. [exp(9fleL)] Z/s''z" +(A) (4.4) 

Next we consider the ratio 

Za.J- +(B) 
G(e) - 

Z a J, +(A) 

and we claim that there exists m = m(fl, e ) >  0 such that 

Z/J,J,,+(B) Z/~.+(B) 
Z/t'j" +(A) >~Za'+(A) exp(- f ie  .... L) (4.5) 

To prove it we compute the logarithmic derivative of G, obtaining 

d 
log G(a) = fl ~, 

.X" = i X  I , .X'21 e~,4 
N 2  = - -  A4 

[ E~' jo' + (o- (x) )  - E ( i  :~ + ( a ( x ) ) ]  

x = ( X l ,  x 2  ) �9 (~ / !  

x 2  = - -  M 

[~/~'J~176 (4.6) 
, |  b o t  A 

Part (ii) of Proposition 2.1 applied to Abo t and A implies that 

R H S o f ( 4 . 6 ) ~ f l ( 2 L + l ) 2 e  .... (/J ..... , ) t  

where m is the quantity given in Proposition 2.1 and e' is such that the 
height of Abo t is given by t e'L3. If we redefine 

m(fl, e)=~ inf m(fl, a,d) 
ae[d.  I1 

we get (4.5) for L large enough. 
If we now combine (4.4), (4.5) and use Proposition 3.1, we find 

Za" t~ a 
RHS of(4.3) >_-exp( - 9 f l e L - f i e  .... L) _~7~_g_~).it d [0](F(L ' e)) 

Z a, tO~(A). 
>~ exp( - 10fleL) Z/~. +(A) (4.7) 
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On the other hand, we have 

Zr c~ e -"PL Z/~" Ek](A) 

Z~.+(A) /> Z p , + ( A )  
(4.8) 

Finally, we use duality together with Proposition 3.7 to get that 

lim sup 1 log [ Ze" E*J(A).] 
L~_  f l (2L+ 1) L Ze.  + ( A  ) j <~ r/j 

Thus we can conclude that there exists Lo( f l ,  e) such that, if L~> L o, then 
we have 

lt ~' s~, [Ol(F (L, e ) ) >1 e -S/~.O-L + J ) - I Ip~L e - t~( 2 L + I ) 

~ e -[l(rr  + l ) 

5. UPPER B O U N D  ON THE PROBABIL ITY  OF 
A LARGE D E V I A T I O N  

5.1. The Var ia t ional  Problem 

We start by stating in a precise way the variational problem which is 
preliminary to the proof of Proposition 2.3. 

We denote by ~ the set of all rectifiable curves 7 e R-" such that ), is 
either a closed curve inside the unit open square Q = {(x, y) e R2:0 < x  < 1, 
0 < y < 1} or it is an open curve, which, with the exception of its end- 
points, is entirely contained in Q. We let ~.,. denote the set of self-avoiding 
curves in ~.  The collection of families (finite or countable) of curves in 
~(~,.) will be denoted by ~*(cj. ,) .  

Clearly, any ), e cj.,. splits the square Q into two disjoint connected sub- 
sets denoted by A~., B~,; we set V(),)=min{ ]Arl, ]B~.]}. We also define, for 
any curve y e ~ ,  the Wulff functional W(),) as 

IV(),) =I~. r(~i',.) ds 

where s is the'length parameter of the curve ), and r(17~.) is the surface ten- 
sion at inverse temperature fl in the direction of the normal 17.,. to the curve 
7 at the point s. Finally, we define the function c~(v), 0 < v <~ or, as 

inf W(),) if 0<v~<~ 
~ ( v ) - ; , ~  ~,: v(r)=,, (5.1) 

(~(1/2) if �89 



90 Cesi et  al. 

O(v) can be computed exactly [see ref. 17, where, however, there is a mis- 
take in the expression for q~(v) due to a misprint] 

~,.v v/v if O<v~<vo 
~(v) = ( r (0)  if Vo<V 

(5.2) 

where the constant w is the value of the Wulff functional W(y) on the Wulff 
curve ~'re R 2 enclosing a unit area (see, e.g., ref. 17 or ref. 2) and the 
singularity point v o satisfies the equation 

Notice that if for any m~ [0, m*] we set V(m) = ( m * - m ) / ( 2 m * ) ,  then 
~(V(m)) = q~(m), where cp(m) has been defined in Proposition 2.3. 

For future purposes it is convenient generalize a little bit the definition 
of c?(v) by showing that the infimum in (5.1) can be taken not only over 
a single curve, but over a family fr s ~*.  With this goal in mind, given a 
family ff s D*, we fix an arbitrary point Xo ~ Q in such a way that Xo does 
not lie on one of the curves of ff and we define the set A~r as the union of 
those points x E Q such that any path connecting x with Xo and intersecting 
in a finite number of points the curves in fr intersects them an odd number 
of times counting multiplicity. We define the phase volume of the family 
f#, V(ff), as the minimum between [A~I and [Q\A,,jI. Using the above 
definitions, we have the following result. 

Let W(.aY)=~ W(y~). Then, for any O<v~<�89 the Lemma 5.1. 
following holds: 

O(v)= inf W(fr 

V (  '.# ) >~ e 

Proof. It is clearly sufficient to prove that for any 0 < v-%< �89 

~(v)-%< inf W(fr 

Given a family if, we assume, without loss of generality, that its phase 
volume coincides with [A~ [, so that [A~r -%< ~. Let now {A ~} be the decom- 
position of the set A~ into mutually disjoint connected components and 
let, for any given ~, y]'. . ,  y~,, k ,  <,% + ~ ,  be a decomposition of the curve 
0A ~ c~ Q into countably many self-avoiding curves in D. Using the fact that 
[AS[ -%< [A~[ ~< �89 it is not difficult to check that 

k~ 

i = l  
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so that 
k ~  

EE 
ot i = 1  

Moreover,  it is obvious that 

k ~  

w(~c)=Z E w(~,7) 
i = l  

Thus we immediately conclude that 

inf W(ff) 1> inf 
~ E ~ *  ~ *  

V( ' : r  >~ t, Zi V(~'i)~t' 

w(~) (5.3) 

We observe at this point that, because of (5.1), (5.2), one has 

w(y) >~ ~(v(y)) rye ~,. 
and 

~o(v;)/> q~ vi V vi ~= i 
i = )  i 1 

Thus the RHS of (5.3) can be bounded from below by 

inf ~(~(V(),,))>~(~V(y,))>~O(v) 
)'1 ' ' " 7n " " " : 7i ~ ~-C~s i 

Z i  V() , i )  >~ v 

and the lemma follows. 1 

5.2. Proof  of  Propos i t ion  2.3 

The proof  of this result follows closely the proof  given by IoffC 8) for 
the case of + boundary conditions. Before starting, we need to introduce 
some more notation. 

In the following A will always denote the square QL. and for simplicity 
we let N = 2L + 1 be the length of its sides. 

We then choose two real numbers 0 < v < b < �88 and we say that a con- 
tour F is b-large either if it is closed surrounding an area larger than L 2b, 
or if it is open and it splits the set QL into two parts each of which has an 
area larger than L zb. Here we adopt  the convention that the area of a finite 
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set A = 7/2 is simply the number of sites of A. The subscript b in objects like 
Cb(" ), C~'(.), ~Ob(a)  means that we consider only b-large contours. A. 

Given a sequence (u~ ..... u,) of dual sites in A*, we denote by 
P =  [ uj ..... u,,] the polygon 

[ ~ ,  ..... u,,] = () [u;_ , ,u , ]  
i=2 

If u, =u , , ,  P is said to be closed ( 6 P =  ~ ) ,  otherwise it is open and its 
boundary is 6 P =  {u~, u,,}. We call P a v-skeleton if 

LV 
2 ' ~<<' lx i+l-x i l~-<~L" V i = l  ..... n - 1  

Given now a contour y, we say that y is consistent with a v-skeleton 
P =  [Ul ..... u,,] and we write y ~ P if: 

(i) ~y=6P.  

(ii) The vertices of P lie on y in the order corresponding to the 
natural order of the vertices of y. 

(iii) The Hausdorff distance between any edge l~-= [x~_~, xi] of P 
and the part of y connecting x;_ ~ with x~ is not greater than L v. 

Using the construction of Lemma 5.11 in ref. 2, is easy to check that, 
for any L large enough and any contour ~, with diam(y) i> L", there always 
exists a v-skeleton S consistent with y. In particular, for any L large 
enough, it will always be possible to associate a particular v-skeleton S to 
any b-large contour ~,. We assume that a definite choice has been made 
once and for all, and ~(7) denotes the skeletons of y. Finally, given a set 
, ~ =  {S~ ..... Sr} of skeletons, we denote by E(~9 ~) the set of all configura- 
tions a ~ 12 A such that the family of the v-skeletons of their b-large contours 
coincides with 5?. We also set 

W(~/Cp ) : ~ W(Si)  
i=l 

where, for any v-skeleton S =  [xj  ..... xk], 

k 
w(s)-  ~ r(x i-xi_l) 

i=2 
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Notice that, for a given v-skeleton S, the number k of vertices of S and the 
value of the Wulff functional W(S) are related by the following simple 
inequality, which follows from the definition of W(S) and from (1.12): 

r(O) L" ,  
W ( S ) > ~ K  (5.4) 

Given 0 < d <  cp(m), we define the event 

K -  {a: W(g(a)) >1 (<p(m) - d )  L} 

where ~(a) denotes the collection of the v-skeletons associated to the 
b-large contours of a. Clearly, ~q(a) can also be the empty set. Then we 
write 

/,yie{mA(a)=m} <.,u~'e{m,,(a)=ml K'} +/,~' e(K) (5.5) 

The second term of (5.5) can bounded from above by adapting to our case 
the technique of Section 10 of ref. 16. More precisely, we have the following 
result. 

Lemma 5.2. For any fl>fl, ,  

1 
l im ~ f  - ~ - ~  log p~" O(K) >~ ~0( m ) -  d 

Proof. We write 

p~' ~(X) ~< ~ lt~' ~(E(5:)) (5.6) 
.'1' = { S i , . . . ,  S ,  } 

w (  '.'.9") >I ( r - d )  L 

In order to estimate the generic term itS' ~ we will use the following 
lemma (compare with Lemma 10.1 in ref. 16, where + boundary condi- 
tions are considered): 

L e m m a  5.3. Let 5: = {S~ ..... Sk} be a collection of v-skeletons. For 

any fl > fl,. 

PA (E("~176 "-~ e -  ' 

Before proving Lemma 5.3, we finish the proof of Lemma 5.2. For 
each collection of skeletons 50, we let N ( ~ )  be the sum of the number of 
vertices of all skeletons in ~ ,  and Ak is the number of S: with N ( ~ )  =k .  
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Only terms with N(<9 ~ ~< 2 IA*I contribute to the RHS of (5.6), so using 
(5.4) and Lemma 5.3, we have, for all ee (0 ,  1), 

RHS of (5 .6)~<exp[- (1  - e )  fl(rp(m) - d )  L] ~ A k exp - e  
k =  1 2 0  /] 

A very rough estimate of Ak is given by 

Ak ~< (2L + 2) 2k kkk! 

where the first term takes into account the choices of the vertices in A*, the 
second term is a bound on the number of possible partitions, and the last 
term accounts for the different arrangements. Since k ~< 9L 2, we have 

Ak ~< (9L 2 )3k ~< el0\ log L 

which implies 

RHS of (5.6) ~< exp[ - (  1 - e) fl(cp(m) - d) L] 

(e[trpL" log L )  k] 9~-' e x p [ - - \  20 10 
k = l  

Since e can be arbitrarily small, we have 

1 
limL ~ inf.~_ --~--~ log/t~eS(K). >1 4o(m) - d 

We are then left with the following. 

Proof o f  Lernma 5.3. To simplify the notations, we consider the case 
of a single v-skeleton S = [x~ ..... x , ] .  The proof relies on the following two 
inequalities: 

2(~*\A(y)) 
IX'l'i eS(E(S)) ~< ~ 2(d'*) (5.7) 

),~C(/;~.65;1 

and, letting S ' =  [xa ..... x,,_ ~], 

2 
./~ C~ g; ].  ,5s) 

2(~*\A() , ) )  <~ E~'.~(a(x,,_, ) a(x,,)) Z 
"/~ S' 

2(~*\A(y)) (5.8) 
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The p roof  of (5.8) is almost  identical to the p roo f  of  Lemma 3.2, so we 
omit it. I terating this inequality and using (1.10), one gets Lemma 5.3 if 
(5.7) holds. To  prove (5.7), we let gA =g*\6A and we have 

~,~, ~(E(S)) < ~ .  ~'{ ~ �9 ~ ,. ~ �9 ~ ~, ~(~) = s }  

~< 2 ~'~" e{) '  e f f~ (a )}  (5.9) 
), ~ C(e(b 6S} 

"/~S 

Then we set J=Jo~(A) and, using Proposi t ion  1.3, we write 

2' ~ Cld';.*j\J"(),~. 6"/) 

E tiff'J" + ,.,, {yu2 ' e~S(~)}  (5.10) 

Moreover ,  if we let 2 = ?, u 2', we have 

2~,(~,,\A(2)) -J o, z (~., \/1"(y)) + ,..,,"' J., + {2 e ~ ,  (a)} = w(y) w,(2') 
2~(~,  \/1"(y)) 2~(,~ �9 ) 

(the weight of ), has no J superscript,  since ), has no edges on 6A). Even 
though in general /1(2)~/1"(?,) u A ( 2 ' ) ,  it is easy see that  

2J(a*  \a (~ ) )=  2-'(g'* \ (a"( ; , )w a(2'))) 

Using the identity ( remember  that  6), = {x t ,  x,,} ) 

2J(~*  \(/1"(~,) u/1(,,;~'))) 
w,(2') 

~.' ~ c<*,',~"(r~. ,~.~ 2 J  ( ~ \ d " (  2 ) ) 

= E(~i.~ ~_r,, ;,,(cr(:c , )G(x,,)) (5.11) 

and the fact that the above quant i ty  is less than or equal to 1, we arrive at 

w' "2~('~*\A"(Y)) lt~'~(E(S))<~ Y', ~7J ~ (5.12) 
;,~ c~e:.,. I-,, ...... I~ Z (~',,) 

Thanks  to Proposi t ion 1.2, we know that we can replace J with J = 1 in the 
RHS of  (5.12), obtaining an upper  bound.  In order  to complete  the p roof  
of (5.7), one has to check that  

w(9,) 2(d'*\A"(~,))= ~ w(y) Z(dA- '*\A(y)) (5.13) 
; ,~  C ( d j .  { :q . - ' . ' , , l  ) " /~ ( ' ( " ; '~ .  I . ' q .  x, ,}  ) 

; ,~S  ) ,~S 
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~ 1  . . . .  I-----1 V------q _ 

Fig. 4. Changing the splitting rules. 

This equality follows from the existence of a bijective weight-preserving 
mapping from the set 

{(y, _)~). ~,E c(d.,, {x,, x,,} ), _~ ~ c*(#* \A"(),))} 

onto the set 

{(y', ~'). y 'e c(~*, {x,, x,,} ), _)~'e c*(g* \~(y'))} 

Such a mapping is obtained as follows (see also Fig. 4). 
Let X be the set of all edges contained either in y or in one of the con- 

tours 2 ~ _2. Then Xis a set of edges with fiX= {x~, x,,}. Split now X according 
to the splitting rules. The outcome is a collection of contours one of which 
is open with boundary {x~, x,},  while the rest are closed. We let y' be the 
unique open contour and 2' the family of closed contours obtained. One 
can check that this is actually a bijective mapping between the two sets 
given above. 

This completes the proof of Lemma 5.3. II 

In order to finish the proof of Proposition 2.3, it is now sufficient to 
show that 

lim inf - ~l--1-1v~ log p P A' ~{m ~(a) = m lK c} = + co (5.14) 
N ~ c r .  ply 

We then denote by R the set of all _y~C*(gA, ~ r such that 
W(~(7)) < ( q g ( m ) - d ) L  and we write 

l ,~'~{mAa) =mlK'} ~<sup p~'~ (5.15) 
7 ~  R 

Bounds ol7 (5.15) when y 4: ~ .  We postpone to the end the analysis 
of the case _7 = ~ .  If _y :# ~ ,  we can split A as a union A = A(_y) w/~(y) as 
follows: let/l  and 0 be the two elements in * * _ _ C (gA) which are mapped into 
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7 by (1.22). Order now the elements of C*(g*)  is some arbitrary way and, 
assuming that 2 precedes 0 in this order, define [see (1.16)] 

,4(7) = int ),, /~(7) = A\A(7) = int 0 

Let also [ see (1.15) ] 

A.:;,(2,) = A."(2,) c~ A(2'), A~(_7) = A-"(_~) n 9(_y) 
and 

A(Z) = 3(?)\z-:~(Z), B(_~) = .g(Z)\A.~(?) 

Then we have the following result. 

l . e m m a  5.4. There exist d' = d'(fl, d) > 0 and Lo(fl, d) such that for 
any L > L o  and for any 7 e R  with 7 = ~ ,  if we let J=JoD(A), we have 

< Z{ IA[ >~ d'N2} "'#" " + ,,~.b {ImAcr) -m*l>~d '}  

+z{ IOl >~d'N 2}/t{.~" + { Im~(~ ) -m * l  ~>d'} (5.16) 

where the subscript b means that the measure is conditioned not to have 
any large contour, and we have set A =A(7),  B = B(_7). 

R e m a r k .  The couplings J have the effect that the + boundary con- 
ditions act only on 6A\OA, while we have free boundary conditions on 
~A ~ ~A (similarly for B). 

Proof.. We assume that L and y have been chosen satisfying the 
hypothesis of the lemma, and we let As= A"(7) and so on. Let 5, ~ = S(y) be 
the set of the skeletons of the large contours. Since W(5 a) <~(cp(m)-d)L,  
the volume of A ~ satisfies 

IA'I <~ CN ' + "-~ (5.17) 

for a suitable constant C independent of L.~gJ Moreover, using Lemma 5.1, 
(5.3), and the fact that ~0(m)= ~((m*--m)/ (2m*)) ,  we get that there exists 
e(d) > 0 such that the phase volume V(~)  is bounded by 

m* --m'~ N ~ 
V(6 ~)~<(1 - e ( d ) )  \ ~ m *  J - (5.18) 

for any L large enough. Finally, we assume, without loss of generality, that 

121 < �89 z 

822/85/1-2-7 
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Then, using Lemma 5.13 of ref. 2 and (5.17), we get that 

I I A I -  V(~)I ~ C . N  l +2,, 

for a suitable constant C~, so that, using (5.18), 

( e ( d ) ~ ( m * - m ~  N2 1 , 
IAI~< 1 -  2 J \  2m* J and [BI>~N- (5.19) 

for any N large enough. 
Fix 0 < d'  ,~ 1 and let us distinguish between the two cases (i) I AI ~< 

d 'N  2 and (ii) JA I >~d'N 2. 
In the first case, if we denote by roB(a) the (normalized) magnetization 

inside B, we get 

ImB(a) - ml ~< 2CN 2"- t + 2d' 

and the lemma follows for d'small enough, since 2v < �89 
In the second case, let us suppose that 

I [mB(er)] - m * l  <~d' and l imA(a) [ -m*[  ~<d' 

Then, using (5.19) and the fact that the total magnetization is equal to 
m >~ 0, it is clear that ms ~ m* and mA ~ -- m* for d' small enough, so that 

IAI (m*- -m)  Nz <~ C,d '  + 2CN 2v-I 
2m* 

for a suitable constant C2. Thus, by taking d'  small enough independently 
of L, we get a contradiction with (5.19). The lemma follows from the trivial 
estimate 

~,~'~{I Im,,I-m*l ~>d'} ~</2~-'b{ImA--m*l ~>d'} I 

We are left with the estimate of the two terms in the RHS of (5.16), 
that is, thanks to (5.17), with the estimate of 

sup 
A ~ Q  L 

dN2<~]AI<~N 2 N~,Ic3+A]~<CNI+2v 

J'J'+~ JmA(cr)- m*l ~>d}  (5.20) CA.b ( 

where J =  Job(A), so that the + boundary conditions act only on OA\6A. 
Let, for any a E 12,~, 

cg(a) = {x E A : 3 a path from x to OA inside A 

such that a(y)  = - 1 along the path} 
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Notice that if u e A is such that d(u, A")>1 N 2b, then it~'.sg +-almost surely, 
u~kCg(a), since otherwise there would be a cluster of minus spins inside A 
with area larger than N zb and, by consequence, there would be a large con- 
tour inside A. Hence 

IV(a)[ ~< 4N' +2b s +-almost surely (5.21) 

We then denote by cg, the collection of all g c A  such that 
lt~'.'~+ {c~'(a)=g} > 0  and we write 

~L,#, J, + �9 A.o {ImA(~)-m*l >~d} 

~< sup - /J 'g '+{ImA(a)-m*l>~dlCg(a)=cg} (5.22) I-r A , b  
~g e ~ * 

Given now ~ e ~o'*, let ~ = cg w 0 +~ w OQL and let A' = A\~.  By construc- 
tion we have that any ~e(2  A, such that ~g(a)=cg satisfies a ( x ) =  + 1 
Vx e O+A '. Moreover, thanks to (5.21), we have that 

1,4'1 ~ > ~ N  2 

for any N large enough, so that 

ImA.(a) - m.,(a)l >/d/2 

for any N large enough. Thus we can bound from above a generic term in 
the RHS of (5.22) by 

/~lJ.S.+{ i m A ( a ) _ m ,  I ~> dl ~ ( ~ ) - - ~ }  A , b  

-<,4.; {I.,.(.)-.,*l >"2j ql 
{mA,(er)~m* a t  , It~',+lma'(cr)>>-m* +d/2} 

~< lZPA',+b 
- -  ~ j -e It ~"+ { all contours are small} (5.23) 

Using Lemma 3.1 of ref. 8 (see the appendix of ref. 18 for a simplified 
proof), we have 

fl#i,+b { m a.( cr ) <~ m* - d } ~ c exp( - CN 2-4b ) (5.24) 

for a suitable positive contant C. To bound the other term, since 

IOA'I<<.IOAI+IcgI<~CNt+2"+2ON~+4b+4N<<.N ~', y < 2  
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for any N large enough, we can use inequality (4.8) in ref. 8 and we get 

ll~', § m.4.(a) t> m* + ~ ~< Ci exp( - Cl N 2) (5.25) 

for any N large enough for a suitable constant C~. We finally estimate the 
denominator in (5.23). We have 

ll~', § { all contours are small} 

~> 1 -/l~',+ { there exists a ,-path of - spins with diameter ~> L h} (5.26) 

>>, 1 - J "  + { there exists a ,-path of - spins with diameter >/L b } (5.27) 

where we have used the FKG property in the second inequality and l J  s' § 
denotes the infinite-volume plus phase. Finally, using the results of ref. I, 
we have that the RHS of (5.27) tends to zero as N--, co. If we now combine 
(5.24)-(5.27), we get that 

1 
limu_inf~. --~--~ log l,{s. o{ m , ( r  = m I K"} = + 

and Proposition 2.3 follows. II 

Bounds  ol7 (5 .15 )  when 7= ~ .  We finally estimate 

= , , ,  I. b = d }  (5.28) 

For this purpose let .3= {x ~ A ' d ( x ,  OA)>~ N'-b}. Then we have that ll!~" o 
almost surely there exists a closed *-path ~ c A\.3 encircling A such that 
either a =  + 1 on c~ or ~ =  - 1  on ~. This is so because on the contrary 
there would be two paths of spins of opposite sign connecting OA with c~,,T. 
But this implies the existence of a b-large contour between them. Given 
now a closed *-path ~ c A\,4 encircling .3, let A be the region enclosed by 
~. Since by construction lm I(a)--mA(a)] ~<4N 2b-I, we get 

(5.28) ~< sup sup /l~" ~{ Im.,(,~)--ml ~<4N -'b- '} 
r = + A c . I  c o n n e c t e d  

A ~ 7 1  

(5.29) 

We can now proceed as in the previous case and obtain 

l iminf -VNlOg [ sup sup lt~'~{]mA(~)--,,,J<~4L2b-'}]= +CO | 
N ~ ~ L "r = + A c .4 c o n n e c t e d  

A = z ]  
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